Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 205 (1998) 85-98

On the complexity of the k-chain subgraph cover problem
Chang-Wu Yu?, Gen-Huey Chen®*, Tze-Heng Ma°®

2 Department of Information Management, Ming Hsin Institute of Technology and Commerce,
Hsin-Chu, Taiwan, ROC
b Department of Computer Science and Information Engineering, National Taiwan University,
Taipei, Taiwan, ROC
¢ Institute of Information Science, Academia Sinica, Nankang, Taipei, Taiwan, ROC

Received February 1993; revised April 1995
Communicated by M.S. Paterson

Abstract

The k-chain subgraph cover problem asks if the edge set of a given bipartite graph G is
the union of the edge sets of k& chain graphs, where each chain graph is a subgraph of G.
Although the k-chain subgraph cover problem is known to be NP-complete for the class of
bipartite graphs, it is still unknown whether this problem is NP-complete or polynomial-time
solvable for subclasses of bipartite graphs. In this paper, we answer this question partially by
showing that this problem for an important subclass of bipartite graphs, termed convex bipartite
graphs, belongs to not only the class P, but also the class NC. More specifically, we show that
the k-chain subgraph cover problem on the convex bipartite graph can be solved in O(m*) time
sequentially or O(log?n) time in parallel using O(m?) processors on the CRCW PRAM, where n
and m denote the number of vertices and edges, respectively. © 1998—Elsevier Science B.V.
All rights reserved

Keywords: Bipartite graph; Comparability graph; Convex bipartite graph; NC class; P class;
Parallel random access machine

1. Introduction

In this paper, we study a problem concerning bipartite graphs and chain graphs. A
bipartite graph G=(S,7,E) is a chain graph if each pair of edges either share an end
vertex or are connected by an edge (see Fig. 1). A chain graph is also called a non-
separable bipartite graph [10]. The k-chain subgraph cover problem [18] asks if the
edge set of a given bipartite graph G is the union of the edge sets of £ chain graphs,
where each chain graph is a subgraph of G. This problem has a close relation to the
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Fig. 1. A chain graph.

partial order dimension problem ([18]. This problem is known to be NP-complete for
k>3 and polynomial-time solvable for £ =2 [18].

Recently, Ma and Spinrad [16] presented an O(#n?) time algorithm for the 2-chain
subgraph cover problem. Moreover, they showed that many problems can be reduced to
the k-chain subgraph cover problem. Among those, there is a problem called the biorder
dimension problem [7]. This problem arises from applications in social science, where
multidimensional scaling is called for. There is a problem, named the union biorder
dimension k problem [7], related to the biorder dimension problem. This problem asks
whether a given bipartite partially ordered set can be covered by k biorders. It is
exactly the k-chain subgraph cover problem interpreted in another context.

Although the k-chain subgraph cover problem which is defined on bipartite graphs is
NP-complete, it is still unknown whether this problem is NP-complete or polynomial-
time solvable for subclasses of bipartite graphs. In this paper, we answer this question
partially by showing that this problem for an important subclass of bipartite graphs,
termed convex bipartite graphs (explained below), belongs to not only the class P, but
also the class NC (Nick’s Class [11]). Previously, Cozzens and Leibowitz [7] have
proposed a polynomial-time algorithm to solve the union biorder dimension & problem
on the bipartite posets whose underlying graphs do not contain any induced 3k, (three
independent edges). This subclass of bipartite graphs and the convex bipartite graphs
do not contain each other.

For a bipartite graph G=(S, T, E), an ordering on S (or T) has the adjacency prop-
erty if for each vertex v€ T (or S), N(v) contains consecutive vertices in the ordering.
A bipartite graph G =(S,T,E) is called a convex bipartite graph [15] if there is an
ordering of S or 7 which has the adjacency property (see Fig. 2). In [13], Glover
showed a practically important application of the convex bipartite graph in industry.
In [15], Lipski and Preparata solved the maximum matching problem on the convex
bipartite graph in O(|S| + |T|) time. Dekel and Sahni [9] designed an efficient parallel
algorithm to obtain maximum matchings in convex bipartite graphs. Their algorithms
can be used to obtain parallel algorithms for several scheduling problems. Damaschke
et al. [8] showed that many domination problems are polynomial-time solvable in con-
vex bipartite graphs. Recently, Chen and Yesha [5] devised a parallel algorithm for
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Fig. 2. A convex bipartite graph which S has the adjacency property.

recognizing the consecutive 1’s property. This algorithm can be applied to recognize a
convex bipartite graph in O(log2n) time using O(n*) processors.

In order to solve the k-chain subgraph cover problem on convex bipartite graphs,
we show that it can be reduced to the coloring problem on comparability graphs, to
be defined below. The reduction is detailed in Section 3. The resulting algorithm and
complexity analysis are shown in Section 4. In the next section, we introduce some
notations and definitions that are used throughout this paper.

2. Notations and definitions

For each vertex x in G=(5, 7, E), we define N(x)={y | xy € E}, which is called the
neighborhood of x. Given a graph G =(V,E), the induced subgraph of G by V' CV,
which is denoted by Gy-, is the subgraph of G whose vertex set is ¥’ and whose
edge set contains those edges in £ having both end vertices in V’. We say that two
edges xy,wz of G are independent of each other if vertices x, y,w,z are distinct and
Gx,y,w,:) contains only two edges xy and wz. A bipartite graph is a chain graph if it
does not contain any pair of independent edges. Equivalently, G=(S,T,E) is a chain
graph if and only if N(«) C N(v) or N(v) C N(u) holds for any pair of vertices u,v € S
(or T) [17].

A partially ordered set (P, <) is a set of transitive and irreflexive binary relations
on P. For a given (P, <), we can construct a directed graph Gp ) as follows: the
vertex set of Gip <) is P, and there exists an arc from a to b in G(p <) if and only if
a<b holds. The underlying graph of a directed graph is an undirected graph having
the same vertex set, but replacing each arc with an edge having the same end vertices.
A graph G is called a comparability graph if there exists a partially ordered set (P, <)
such that G is the underlying graph of Gp, <) [12]. Moreover, the directed graph Gp, )
is called a transitive orientation of G. We define x(G) as the minimum number of
colors needed to color the vertices of G so that adjacent vertices are assigned different
colors. An independent set in a graph G is a subset of vertices of G such that no two
vertices in this subset are adjacent.



88 C.-W. Yu et al. | Theoretical Computer Science 205 (1998) 85-98
3. Reductions

For a bipartite graph G, we use cA(G) to denote the smallest £ so that G is £ chain
subgraphs coverable. Since ch(Gy UGy U - U G,)=ch(G)) + ch(G2) + - - - + ch(G,)
if G|,G,,...,G, are connected components of G, we assume the input graph G is
connected.

Let G=(S,T,E) be a convex bipartite graph such that S = {s,s2,...,85¢} has the
adjacency property. That is, the vertices adjacent to each ¢ in T have consecutive
indices in S. Let min(¢) denote the minimum i such that s; is adjacent to . We sort 7'
into #1,4,...,4 such that i <j if min(#;) <min(z;). Then, an adjacency matrix M of G
is constructed as follows: M[i,j]=1 if and only if ; and s5; are adjacent. M is called
a canonical adjacency matrix of G, which plays an important role in decomposing the
edge set of G. An example is shown in Fig. 3. As usual, the element with the smallest
row and column indices is located at the upper-left corner of a matrix. An induced
submatrix in M is a matrix with elements {M[i,j]|i€R,j€ C}, where R is a set of
row indices and C is a set of column indices. From the definition, a bipartite graph G
is a chain graph if and only if there are no induced submatrix

o] [l

in the adjacency matrix of G. For a particular adjacency matrix, a pair of edges are
called an o pair if they induce the former submatrix, and a f pair if they induce the
latter submatrix.

As a consequence of the adjacency property of the convex bipartite graph, the fol-
lowing lemma results.

O O O O O O
o O O o
o

0 0
0 0 @
/

Fig. 3. The corresponding canonical adjacency matrix of Fig. 2 and the resulting partition generated by the
greedy decomposition algorithm.

AN
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Lemma 1. Let G be a convex bipartite graph. Then any canonical adjacency matrix
does not contain any of the following induced submatrices:

[1 0 1] and [0 l],

1 x

where x=0 or 1.

It follows that there is no § pair in M.

Then we construct G* = (V*,E*) from G=(S,T,E) such that V* =E and two ver-
tices in ¥ are adjacent if and only if the two edges in G are independent. It is not
difficult to see that the edge set of every chain subgraph of G induces an independent
set of G*, but the reverse is not always true. For example, let us consider the bipartite
graph G =(S,T,E) shown in Fig. 4, where S ={s|,52,53,54} and T ={t1,55,13,84}. Al-
though the edge subset £/ = {(s1,#),(s2,%2),(83,%3),(s4,24)} induces an independent set
of G*, no subgraph of G whose edge set contains £’ can be a chain graph. However,
when G is restricted to a convex bipartite graph, we will show that there exists a
special decomposition of the edge set of G (i.e. the vertex set of G*) such that each
edge subset of G can be extended to a chain subgraph of G.

Theorem 2. G* is a comparability graph if G is a convex bipartite graph.

Proof. Let M be a canonical adjacency matrix of G. The 1’s in M represent the
vertices in G*. Since each pair of independent edges in G induce the submatrix

o 1)

in M by Lemma 1, we orient the edge from u to v as (u,v) if the entry representing u
in M has smaller column and row indices than the entry representing v in M. Suppose
there is a violation to the transitivity, i.e. after the orientation we have (,v) and (v, w)
but no (#,w). The submatrix of M induced by u,v, and w has the form

u 0 x
0 v O
y 0 w

Since (u,w) does not exist, either x=1 or y=1 results in a forbidden submatrix of
Lemma 1, which is a contradiction. O

Since the edges of a chain subgraph of G induce an independent set in G*, we have
2(G*)<ch(G). By a greedy algorithm (shown below), we can decompose the vertices
of G* into k independent sets. Therefore, we derive a k-coloring of G*. Since G*
is a comparability graph and the ordering (adopted by the greedy algorithm) of the
vertices is actually a perfect ordering [3] on G* (a topological sort of the transitively
oriented graph), the greedy algorithm yields an optimal coloring [3, 14]. If each of



90 C.-W. Yu et al. | Theoretical Computer Science 205 (1998) 85-98

14 s
54 t
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i3 %2
S3 12
[s11t4]
[84,t2] [Sl,t]]
s3] [5,.1,]
G*:
, 1
(ot [s,,1,]

[S4,t3] O [s3’t2]

[53, t3]

Fig. 4. A graph G and its G*.
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the k color classes can be extended into an independent set (in G*) which forms a
chain subgraph of G, then y(G™)>ch(G). Consequently, we have ¥(G*)=ch(G). The
greedy decomposition algorithm is shown as follows.

Greedy Decomposition Algorithm.

Input: A canonical adjacency matrix M of a convex bipartite graph G = (X, Y,E).

Output: A partition of E (the 1’s in M) into S},S,...,S; such that each subset does
not contain an induced « pair.

begin
scanned := 0;
k.= 0;
while scanned<|E| do
begin
k=k+1
Sy = @;
fori:=1to |Y| do
for j:=1to |X| do
if M[i,j]1=1 and x;y; combining with each edge in S; does
not induce an & pair
then begin
add x;y; to S;
MIi, j]:=0;
scanned:= scanned+1
end
end
end.

We call each S; (1<i<k) a greedy independent set. It is worthwhile to note that
there is no « pair in each greedy independent set, but there might exist some f pairs,
which prevent a greedy independent set in G* from becoming a chain subgraph of G.
For example, refer to Fig. 3 where a § pair can be found in the second greedy inde-
pendent set S;.

Our approach to overcoming these obstacles is that for each f pair M[x, y], M[w,z]
(x<w is assumed) in S;, add M[x,z],M[x,z + 1],...,M[x,y — 1] into S;. We use
§] to denote the set of these newly added elements, and we say that the f pair
M[x, y], M[w,z] introduce M[x,z], M[x,z+1],...,M[x, y—1] into S;. Since M[x,z]=1
(otherwise, M[x,z],M[x, y], and M[w,z] form a forbidden submatrix), we do destroy
this £ pair. We claim that no new o or f pair will be generated by this operation.
The remaining work of this section is to prove that for 1<i<k (= x(G)), the edge
set S; US! forms a chain subgraph.

In subsequent discussions we assume that G is a convex bipartite graph and S, S5, ...,
Sy are the output of the greedy decomposition algorithm. Moreover, we use M[S;] to
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denote the smallest induced submatrix of M that contains S;. The submatrix M[S;]
contains 1’s in the entries specified by S;, and 0’s otherwise. For example, M[S,] with
respect to Fig. 3 contains 13 1’s. Note that the two entries at the left-up corner and
the right-bottom corner of M[S;] are 0’s, although they are !’s in M. We say that
M, j1 < MIk 1] if i<k and j</ (M[i,j] is scanned before M[k,[] in the greedy
decomposition algorithm). Next we show some properties of S; and S; U S!. In our
subsequent proofs, a lot of discussions are made on the relative positions of elements
of a canonical adjacency matrix M. We shall use lines, if necessary, to indicate elements
with the same row or column indices. To avoid tediousness, some boundary and/or
trivial cases are left to the readers.

Lemma 3. There is no induced submatrix [1 0 1] contained in each M[S;].

Proof. It is sufficient to prove that the greedy decomposition algorithm selects consec-
utive 1’s for each row of M. Conversely, we suppose it is not true. Consider the [1 0 1]
(=[abc]) submatrix in some M[S,]. Since [1 0 1] is forbidden in M by Lemma 1,
we have p=1 initially in M and b ¢ S,. Without loss of generality, we assume b€ S;.

If />r (refer to Fig. 5(a)), there exists d =1 € S, such that b and d form an x pair.
Then we have 0, =0,=0 in M. Since d €S, and c€S,, d and ¢ do not form an «
pair, and we have e=1 in M. Thus there is a forbidden submatrix [d, 0,,e], which is
a contradiction.

Similarly there is a forbidden submatrix [d,0;, €] when / <r (refer to Fig. 5(b)). O

d 0, e
Sr
o, a=1 b c=1
Sy
(a)
d 0, e
S,
o a=1 b c=1
Sr
(b)

Fig. 5. The proof of Lemma 3. (a) / > r. (b) / < r.
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X 02 a
01 y b
c d Z

Fig. 6. The proof of Lemma 5.

Lemma 4. There is no induced submatrix [1 0 1] contained in each M[S; U S!].

Proof. Note that the set S/ contains 1’s distributed over one or more rows. These 1’s
are consecutive if they belong to the same row. Moreover, in each row there is a 1
(in S;) next to the rightmost 1 (in S/). Hence M[S; U S/] does not contain [1 0 1] as
an induced submatrix. [

Lemma 5. Suppose y€S; and z€S;. If y <z, then i<j.

Proof. Suppose i>j. There exists an x € §; such that x and y form an « pair. Refer to
Fig. 6, and we have 0; = 0; =0. Since x and z are in 5}, either 4 or ¢ is 1. Then either
{x,07,a} or {o1,y,c} forms a forbidden submatrix in M, which is a contradiction. [J

Lemma 6. If x< y<z and x,z€ S;, then y€S,.

Proof. Suppose y€S;. Since x << y<z, by Lemma 5 we have i < j <i. Hence,
j=i. O

To prove the edge set S; U S] forms a chain subgraph, it is then sufficient to prove
that there are no new a pairs and f pairs in S;US], which can be assured by subsequent
lemmas.

Lemma 7. There are no induced o pairs in S — S;.

Proof. Suppose p,g€ S/ — S;, and they form an « pair in S; U S/. Without loss of
generality, we assume p<gq. Moreover let the f pair x, y introduce p, and the f
pair z,w introduce g (refer to Fig. 7), where x, y,z,w € S;. We note that according to
the property of consecutive 1’s, x cannot be on the right of 0, (=0). Thus we have
XK gz Since x,z €S;, by Lemma 6 we have g € §;, which is a contradiction. [J

Lemma 8. There are no induced o pairs between S; and S] — S;.

Proof. Suppose z€ 8] — S;, we S;, and they form an « pair in S; U S/. Moreover, let
the f pair x, y introduce z. Refer to Fig. 8. We consider all possible positions of w,
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p X 0
-~~~ 2
| |
| |
y | |
| |
9 q z
w
Fig. 7. The proof of Lemma 7.
a
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1
|
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|
|
|
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t 0 1d
e N |
' |
' |
' |
| |
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! |
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' |
l |
' [
' |
b e A ————
05 04 ¢

Fig. 8. The proof of Lemma 8.

relative to z. Since z and w form an o pair, there are four possible positions of w, i.e.
a,b,c, and d.

We claim w # a. Otherwise there is a contradiction because by Lemma 6 a <z <x
and a,x € S; imply z € S;. Also we claim w # b. Otherwise [z,0,x] (=[1 0 1]) forms a
forbidden submatrix in M[S; U S}].

Next, we claim w#c. The reason is as follows. If w=c, we have 04 =05 =0 in
M[S; U S!]. We then consider the possible values of p in M. If p=1, by Lemma 6
p belongs to S; because x < p < c. Then x and y do not form a B pair in §;, which
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01 02 03 1 X
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I |

1 |

w 04 05

Fig. 9. The proof of Lemma 9.

is a contradiction. If p=0, we have 0, =0 according to the property of consecutive
1’s. Moreover, we have 03 =0 in M[S; U §7], because otherwise [03,04,c] (=[1 0 1])
forms a forbidden submatrix in M[S; U S!]. Since 03 =0,=0 in M[S;US/],y and ¢
(=w) form an « pair in §;, which is a contradiction.

Last, we claim w # d. Conversely, we suppose w=d. Since z and d form an a pair
in S;US], we have o¢ ¢ S;US/ and by Lemma 6 ¢ ¢ S; because < 0s <d and d €3;.
Besides, since x and y form a § pair in S;, we have p¢S; and by Lemma 6 0, ¢ S;
because y < p < 0. Hence, y and d form a f pair in S;, and according to our process
of eliminating f pairs, we have o € S; U S/, which is a contradiction.

Since all four cases lead to contradictions, the lemma follows. O

Lemma 9. There are no new B pairs generated in S} — S;.

Proof. Suppose there is a new f pair (the two 1’s in Fig. 9) generated in S/ — ;.
Then 0, =0 in M[S; US!]. Let the two 1’s be introduced by two f pairs x, y and p,w
(refer to Fig. 9), respectively. Since x, y, p, and w are all in S;, we have 03=04=0
in M[S;]. Then we have 0 =05 =0 in M[S;]. Otherwise either [0,03,x] or [w,04,05]
forms the forbidden submatrix [1 0 1]. Note that o4 is on the left of os because if p
has a greater column index than x, then os €S/ and the new f pair would not exist.
It is implied (from 0| =05 =0) that x and w form a B pair in §;, and they introduce
0, =1 into S; U S]. This contradicts our assumption about 0;. [J

Lemma 10. There are no new B pairs generated between S; and S{ — S;.
Proof. Suppose there is a new B pair p,q, where p€S; and g€S; — §;. Also ¢

is assumed to be introduced by the f pair x,y. The subsequent discussion is made
according to the relative positions of p and g.



96 C.-W. Yu et al. | Theoretical Computer Science 205 (1998) 85-98

0l q x
T [ !
: | |
| ! !
| | |
| | |
Ll b
p 0, 0y
(a)
0 0 P
r T -0/
[ | |
| | |
by 4 x :
| |
| |
| |
| |
_________ L __J
y 04 95
(b)

Fig. 10. The proof of Lemma 10. (a) g has a greater column index than p. (b) p has a greater column
index than g.

Case 1. g has a greater column index than p (refer to Fig. 10(a)).

We have 0y =0, =0 in M[S; US/]. If 03¢ S;, then p and x form a § pair in S,
and they introduce o; (=1) into S; U S/, which is a contradiction. If o3 €5;, then
[p,02,03]1=1[1 0 1] forms a forbidden submatrix.

Case 2: p has a greater column index than ¢ (refer to Fig. 10(b)).

We have 0, =0 in M[S; U S/]. Since 03 =04 =0 in M[S;], we have 0j =05=0 in
MTS;]. Otherwise, either [0}, 0,, p] or [y, 04,05] forms the forbidden submatrix {1 0 1].
Hence, y and p form a f pair in S;, and consequently 0, =1€ §; U S/. This implies
that p and ¢ do not form a f pair in S; U S/, which is a contradiction. O

Thus far we have proved by Lemmas 7-10 that no new independent edge in G (an
o pair or a f pair in M) would be generated by adding S/, 1<i<k. Therefore, each
edge set S;US!, 1<i<y(G™), forms a chain subgraph. Summarizing the discussion of
this section, we obtain the main result of this paper as stated below.

Theorem 11. If G is a convex bipartite graph, then ch(G)= x(G*).
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4. Algorithm and complexity analysis

According to Theorem 11, the k-chain subgraph cover problem on the convex bi-
partite graph can be solved by the following algorithm.

Input: A convex bipartite graph G=(X, Y, E).

Output: Find minimum number of chain subgraphs of G that can cover G.

Step 1: Determine an ordering of X having the adjacency property.

Step 2: Generate the canonical adjacency matrix M of G by sorting Y.

Step 3: Construct G* and its transitive orientation from M.

Step 4: Partition E into S,Ss,...,Sk by coloring vertices of G*.

Step 5: Determine S; US], S, US;,...,5 U S;, and generate k chain subgraphs from
them.

Let n and m denote the numbers of vertices and edges, respectively, in G. The
complexity of the algorithm is analyzed as follows. Step 1 can be completed in O(m)
sequential time by Booth and Lueker’s work [1]. If Chen and Yesha’s algorithm [5]
is applied, Step 1 can be completed in O(log2 n) parallel time using O(»n*) processors
on the CRCW PRAM.

Step 2 can be done by (1) computing all min(y;)’s, (2) sorting ¥ according to
min( y;)’s, and (3) constructing M from sorted Y. Substep (1) takes O(m) sequential
time or O(logn) parallel time using O(n*/logn) processors on the EREW PRAM
[11]. Substep (2) takes O(nlogn) sequential time or O(logn) parallel time using O(n)
processors on the EREW PRAM [6]. It is quite easy to complete substep (3) in o(n?)
sequential time or O(1) parallel time using O(n?) processors on the EREW PRAM. So
totally Step 2 takes O(n?) sequential time or O(log#) parallel time using O(#?/ logn)
processors on the EREW PRAM.

Step 3 can be done in O(m?) sequential time or O(1) parallel time using o(m?)
processors on the CREW PRAM. Step 4 can be completed in O(m?) sequential time
[14] or O(logn) parallel time using O(m?) processors on the CREW PRAM [4]. With
the aid of Lemma 4, Step 5 can be completed in O(m?) sequential time or O(logn)
parallel time using O(m?) processors on the CREW PRAM.

To sum up, the execution of the algorithm needs O(m?) time sequentially or O(log’ n)
time in parallel using O(m>) processors on the CRCW PRAM.

Theorem 12. The k-chain subgraph cover problem on the convex bipartite graph can
be solved in O(m?) time sequentially or O(log? n) time in parallel using O(m*) proces-
sors on the CRCW PRAM, where n and m denote the numbers of vertices and edges,
respectively. Besides, if the answer is “yes”, the k-chain subgraphs can be constructed
with the same time complexity and processor complexity.

Corollary 13. The k-chain subgraph cover problem on the convex bipartite graph
belongs to not only the class P, but also the class NC.
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5. Conclusion and open problems

The containment relationships for some subclasses of bipartite graphs are known as
follows [2]: bipartite permutation graphs C doubly convex bipartite graphs C convex
bipartite graphs C chordal bipartite graphs C perfect elimination bipartite graphs C bi-
partite graphs. The &-chain subgraph cover problem has been proved to be NP-complete
for the bipartite graph. In this paper we further show that it belongs to the class P
(also in the class NC) for the convex bipartite graph. The immediate open problem
resulting from this paper is to decide whether the k-chain subgraph cover problem is
solvable in polynomial time for chordal bipartite graphs.
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