Chapter 4 CONVENTIONAL ENCRYPTION: ALGORITHMS

- Triple DES
- International Data Encryption Algorithm (IDEA)
- Blowfish
- RC5
- CAST-128
- RC2

Characteristics of Advanced Symmetric Block Ciphers
Triple DES

- **DES is vulnerable to brute-force attacks**
- **Double DES** –
 - Two encryption stages and two keys
 - Input – plaintext P, two encryptions K₁, K₂
 - Output – ciphertext C
 \[C = E_{k_2}[E_{k_1}[P]] \]
 - Decryption –
 \[P = D_{k_1}[D_{k_2}[C]] \]
- **Meet-in-the-Middle Attack**
 - Since \(C = E_{k_2}[E_{k_1}[P]] \) ⇒ \(X = E_{k_1}[P] = D_{k_2}[C] \)
 - Given a known pair (P, C), the attack proceeds as follows
 - encrypt P for all \(2^{56} \) possible values of K₁, store the results in a table and then sort the table by the values of X
Meet-in-the-Middle Attack (cont.)

- Encrypt P for all 2^{56} possible values of K_1, store the results in a table and then sort the table by the values of X.
- Decrypt C using all 2^{56} possible values of K_2, check the result against the table for a match.
 - If matches, take the two keys against a new known (P, C) pair, if correct ciphertext is produced, accept them as correct keys.

- In double DES, there are 2^{112} possible keys; and for a given P, there are 2^{64} possible values of C could be produced.
- On average, for a given plaintext P, the number of different 112-bit keys that will produce a given ciphertext C is $2^{112}/2^{64} = 2^{48}$.
- 2^{48} false alarms on the first (P, C) pair.
- For an additional (P, C) pair, the false alarm rate is reduced to $2^{48}/2^{64} = 2^{-16}$.
- The probability of finding the correct keys is $1 - 2^{-16}$.
Triple DES (cont.)

Triple DES with Two Keys –

- To counter the meet-in-the-middle attack, a method is to use three stages of encryption with three different keys.
- The cost of known-plaintext attack is 2^{112}, and the key size is $56 \times 3 = 168$ bits.
- Tuchman proposed a triple encryption method using two keys in an order of encrypt-decrypt-encrypt sequence.

\[C = E_{K_1}[D_{K_2}[E_{K_1}[P]]] \]
Triple DES (cont.)

Triple DES with Two Keys (cont.)

- The cost of a brute-force key search is $2^{112} \approx (5 \times 10^{33})$
- The cost of differential cryptanalysis exceeds 10^{52}
- Known-plaintext cryptanalysis:
 - Obtain n (P, C) pairs and place these in Table 1 sorted on P
 - Arbitrarily select a value a for A, for each of the 2^{56} possible keys $K_1 = i$, calculate P_i that produces a:
 \[P_i = D_i[a] \]
 - For each match P_i, create an entry in Table 2 consisting of K_1 and B:
 \[B = D_i[C] \]
 - Sort Table 2 on the value of B
 - for each possible $K_2 = j$, calculate 2nd intermediate value:
 \[B_j = D_j[a] \]
 - if B_j is in Table 2, then (i, j) is a possible candidate for (K_1, K_2)
Cryptography 4

Triple DES (cont.)

- Known-plaintext cryptanalysis (cont.)
 - For a known (P, C), the probability of success for a single value of a is $1/2^{64}$
 - Given n (P, C) pairs, the probability of success for a single value of a is $n/2^{64}$
 - For large n, the expected number of values of a must be tried is
 \[
 \frac{2^{64} + 1}{n + 1} \approx \frac{2^{64}}{n}
 \]
 - The expected running time of the attack is on the order of
 \[
 (2^{56}) \frac{2^{64}}{n} = 2^{120-\log_2 n}
 \]
Triple DES (cont.)

- **Triple DES with Three Keys** –
 - Key length is 168 bits:
 $$ C = E_{K_3}[D_{K_2}[E_{K_1}[P]]] $$
 - Backward compatibility with DES is provided by putting $K_3 = K_2$ or $K_1 = K_2$.
International Data Encryption Algorithm (IDEA)

Design Principles – 128-bit key, 64-bit block of plaintext

- Cryptographic strength
 - Block length
 - Key length
 - Confusion
 - Diffusion

- Implementation considerations
 - Design principles for software implementation:
 - Use subblocks – IDEA uses 16-bit subblocks
 - Use simple operations – XOR, integer addition and multiplication
 - Design principles for hardware implementation:
 - Similarity of encryption and decryption
 - Regular structure
IDEA (cont.)

Design Principles (cont.)

- In IDEA, confusion is achieved by mixing three different operations (16-bit input and 16-bit output)
 - Bit-by-bit XOR, denoted as \oplus
 - Addition of integers modulo 2^{16} (modulo 65536), denoted as \boxplus
 - Multiplication of integers modulo $2^{16}+1$ (modulo 65537), denoted as \odot
 - A block of all 0’s is treated as representing 2^{16}
 - For example, $0000000000000000 \odot 1000000000000000 = 1000000000000001$ (since $2^{16} \times 2^{15} \mod (2^{16} + 1) = 2^{15} + 1$)

- These three operations are incompatible in the sense that
 - No pair of the three operations satisfies a distributive law
 \[a \boxplus (b \odot c) \neq (a \boxplus b) \odot (a \boxplus c) \]
 - No pair of the three operations satisfies an associative law
 \[a \boxplus (b \oplus c) \neq (a \boxplus b) \oplus c \]
IDEA (cont.)

Design Principles (cont.)

In IDEA, diffusion is provided by the basic building block of the algorithm – the multiplication/addition (MA) structure

- Input – 2 16-bit plaintext (F_1 and F_2)
 - 2 16-bit subkeys (Z_5 and Z_6)
- Output – 2 16-bit output (G_1 and G_2)
- Each output bit of the first round depends on every bit of the plaintext and on every bit of the subkeys
- This structure is repeated 8 times to provide effective diffusion
IDEA (cont.)

IDEA Encryption –

- Input – 64-bit plaintext, 128-bit key
- Output – 64-bit ciphertext
- Encryption algorithm consists of 8 rounds followed by a final transformation function
- Round function –
 - Input – 4 16-bit subblocks, 6 16-bit subkeys
 - Output – 4 16-bit subblocks
- Output transformation function –
 - Input – 4 16-bit subblocks, 4 16-bit subkeys
 - Output – 4 16-bit subblocks
- Subkey generator –
 - Input – 128-bit key
 - Output – 52 16-bit subkeys
IDEA Encryption (cont.)

Details of a Single Round

1. Transformation – use addition and multiplication operations
 - Input – 4 subblocks (X_1, X_2, X_3, X_4) and 4 subkeys (Z_1, Z_2, Z_3, Z_4)

2. XOR operation – The 4 output subblocks are XORed to form 2 16-bit blocks that are inputs to the MA structure

3. MA structure –
 - Input – 2 16-bit blocks, 2 16-bit subkeys
 - Output – 2 16-bit output blocks

4. XOR operation – The 4 outputs from the upper transformation are XORed with the 2 outputs of the MA structure to produce 4 outputs
IDEA (cont.)

IDEA Encryption (cont.)

Output Transformation Function

- Input – 4 16-bit blocks, 4 16-bit subkeys
- Output – 4 16-bit output blocks
- Similar to the upper transformation of a single round
- The 2nd and 3rd inputs are interchanged such that decryption has the same structure as encryption
IDEA (cont.)

IDEA Encryption (cont.)

- Subkey Generation
 - Input – 128-bit key Z
 - Output - 52 16-bit subkeys (Z₁, Z₂, ..., Z₅₂)
 - The first 8 subkeys Z₁, Z₂, ..., Z₈ are taken directly from the key Z
 Z₁ = Z[1..16], Z₂ = Z[17..32], ..., Z₈ = Z[113..128]
 - Circular left shift 25 bit positions of Z and extract next 8 subkeys
 - Repeat the above procedure until all of the 52 subkeys are generated
IDEA (cont.)

IDEA Encryption (cont.)

Subkey Generation (cont.)

\[Z_1 = Z[1..16] \]
\[Z_7 = Z[97..112] \]
\[Z_{13} = Z[90..105] \]
\[Z_{19} = Z[83..98] \]
\[Z_{25} = Z[76..91] \]
\[Z_{31} = Z[44..59] \]
\[Z_{37} = Z[37..52] \]
\[Z_{43} = Z[30..45] \]
IDEA (cont.)

IDEA Decryption

- Essentially the same as the encryption process
- The decryption keys U_1, U_2, \ldots, U_{52} are derived from the encryption keys:
 - The first 4 subkeys of decryption round i are derived from the first 4 subkeys of round $(10 - i)$, where the transformation stage is regarded as round 9:
 - The 1st and 4th decryption subkeys are equal to the multiplicative inverse modulo $\left(2^{16} + 1\right)$ of the corresponding 1st and 4th encryption subkeys
 - For rounds 2 through 8, the 2nd and 3rd decryption subkeys are the additive inverse modulo $\left(2^{16}\right)$ of the 3rd and 2nd encryption subkeys
 - For rounds 1 and 9, the 2nd and 3rd decryption subkeys are the additive inverse modulo $\left(2^{16}\right)$ of the 2nd and 3rd encryption subkeys
 - For the first 8 rounds, the last 2 subkeys of decryption round i are equal to the last 2 subkeys of encryption round $(9 - i)$
IDEA Decryption (cont.)

<table>
<thead>
<tr>
<th>Stage</th>
<th>Designation</th>
<th>Equivalent to</th>
<th>Designation</th>
<th>Equivalent to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round 1</td>
<td>$Z_1 Z_2 Z_3 Z_4 Z_5 Z_6$</td>
<td>$Z[1..96]$</td>
<td>$U_1 U_2 U_3 U_4 U_5 U_6$</td>
<td>$Z_{49}^{-1} - Z_{50} - Z_{51} Z_{52}^{-1} Z_{47} Z_{48}$</td>
</tr>
<tr>
<td>Round 2</td>
<td>$Z_7 Z_8 Z_9 Z_{10} Z_{11} Z_{12}$</td>
<td>$Z[97..128; 26..89]$</td>
<td>$U_7 U_8 U_9 U_{10} U_{11} U_{12}$</td>
<td>$Z_{43}^{-1} - Z_{45} - Z_{44} Z_{46}^{-1} Z_{41} Z_{42}$</td>
</tr>
<tr>
<td>Round 3</td>
<td>$Z_{13} Z_{14} Z_{15} Z_{16} Z_{17} Z_{18}$</td>
<td>$Z[90..128; 1..25; 51..82]$</td>
<td>$U_{13} U_{14} U_{15} U_{16} U_{17} U_{18}$</td>
<td>$Z_{37}^{-1} - Z_{39} - Z_{38} Z_{40}^{-1} Z_{35} Z_{36}$</td>
</tr>
<tr>
<td>Round 4</td>
<td>$Z_{19} Z_{20} Z_{21} Z_{22} Z_{23} Z_{24}$</td>
<td>$Z[83..128; 1..50]$</td>
<td>$U_{19} U_{20} U_{21} U_{22} U_{23} U_{24}$</td>
<td>$Z_{31}^{-1} - Z_{33} - Z_{32} Z_{34}^{-1} Z_{29} Z_{30}$</td>
</tr>
<tr>
<td>Round 5</td>
<td>$Z_{25} Z_{26} Z_{27} Z_{28} Z_{29} Z_{30}$</td>
<td>$Z[76..128; 1..43]$</td>
<td>$U_{25} U_{26} U_{27} U_{28} U_{29} U_{30}$</td>
<td>$Z_{25}^{-1} - Z_{27} - Z_{26} Z_{28}^{-1} Z_{23} Z_{24}$</td>
</tr>
<tr>
<td>Round 6</td>
<td>$Z_{31} Z_{32} Z_{33} Z_{34} Z_{35} Z_{36}$</td>
<td>$Z[44..75; 101..128; 1..36]$</td>
<td>$U_{31} U_{32} U_{33} U_{34} U_{35} U_{36}$</td>
<td>$Z_{19}^{-1} - Z_{21} - Z_{20} Z_{22}^{-1} Z_{17} Z_{18}$</td>
</tr>
<tr>
<td>Round 7</td>
<td>$Z_{37} Z_{38} Z_{39} Z_{40} Z_{41} Z_{42}$</td>
<td>$Z[37..100; 126..128; 1..29]$</td>
<td>$U_{37} U_{38} U_{39} U_{40} U_{41} U_{42}$</td>
<td>$Z_{13}^{-1} - Z_{15} - Z_{14} Z_{16}^{-1} Z_{11} Z_{12}$</td>
</tr>
<tr>
<td>Round 8</td>
<td>$Z_{43} Z_{44} Z_{45} Z_{46} Z_{47} Z_{48}$</td>
<td>$Z[30..125]$</td>
<td>$U_{43} U_{44} U_{45} U_{46} U_{47} U_{48}$</td>
<td>$Z_{7}^{-1} - Z_{9} - Z_{8} Z_{10}^{-1} Z_{5} Z_{6}$</td>
</tr>
<tr>
<td>transformation</td>
<td>$Z_{49} Z_{50} Z_{51} Z_{52}$</td>
<td>$Z[23..86]$</td>
<td>$U_{49} U_{50} U_{51} U_{52}$</td>
<td>$Z_{1}^{-1} - Z_{2} - Z_{3} Z_{4}^{-1}$</td>
</tr>
</tbody>
</table>
Blowfish

Design characteristics: 64-bit block of plaintext

- **Fast** – encrypts data on 32-bit microprocessors at a rate of 18 clock cycles per byte
- **Compact** – requires less than 5K of memory
- **Simple** – easy to implement and determine the strength of the algorithm
- **Variably secure** – the key length is variable (32 ~ 448 bits)

Subkey and S-Box Generation

- **Key length** – 32 ~ 448 bits (1 ~ 14 32-bit words), $K_1, K_2, \ldots, K_j, 1 \leq j \leq 14$
- **The key is used to generate 18 32-bit subkeys** (P_1, P_2, \ldots, P_{18}) and 4 8×32 S-boxes:

 - $S_{1,0}, S_{1,1}, \ldots, S_{1,255}$
 - $S_{2,0}, S_{2,1}, \ldots, S_{2,255}$
 - $S_{3,0}, S_{3,1}, \ldots, S_{3,255}$
 - $S_{4,0}, S_{4,1}, \ldots, S_{4,255}$
Subkey and S-Box Generation (cont.)

1. Initialize the P-array and the 4 S-boxes in order, using the bits of the fractional part of the constant π

2. Perform a bitwise XOR of the P-array and K-array (assume key length is 14 32-bit words):

 $$P_1 = P_1 \oplus K_1, P_2 = P_2 \oplus K_2, \ldots, P_{14} = P_{14} \oplus K_{14}, \ldots, P_{18} = P_{18} \oplus K_{18}$$

3. Encrypt the 64-bit block of all 0s using the current P- and S-arrays; replace P_1 and P_2 with the output of the encryption:

 $$P_1, P_2 = E_{P,S}[0]$$

4. Encrypt the output of step 3 using the current P- and S-arrays; replace P_3 and P_4 with the output of the encryption:

 $$P_3, P_4 = E_{P,S}[P_1 || P_2]$$

5. Continue the process to update all elements of P and S
Blowfish (cont.)

Encryption and Decryption

- Two primitive operations
 - Addition: addition of words is performed modulo 2^{32}, denoted by $+$
 - Bitwise exclusive-OR: denoted by \oplus

- In encryption, LE_i and RE_i are referred to as the left and right half of the data after round i has been completed

- Encryption algorithm:

  ```markdown
  for $i = 1$ to $16$ do
    $\text{RE}_i = \text{LE}_{i-1} \oplus P_i$
    $\text{LE}_i = F[\text{RE}_i] \oplus \text{RE}_{i-1}$
  
  $\text{LE}_{17} = \text{RE}_{16} \oplus P_{18}$
  $\text{RE}_{17} = \text{LE}_{16} \oplus P_{17}$
  ```
Blowfish (cont.)

Encryption and Decryption (cont.)

- In decryption, LD_i and RD_i are referred to as the left and right half of the data after round i has been completed.
- Decryption algorithm:

 for $i = 1$ to 16 do

 $RD_i = LD_{i-1} \oplus P_{19-i}$

 $LD_i = F[RD_i] \oplus RD_{i-1}$

 $LD_{17} = RD_{16} \oplus P_1$

 $RD_{17} = LD_{16} \oplus P_2$
Blowfish (cont.)

Encryption and Decryption (cont.)

Function F: the 32-bit input is divided into 4 bytes (denoted by a, b, c, d)

\[F[a, b, c, d] = ((S_{1,a} + S_{2,b}) \oplus S_{3,c}) + S_{4,d} \]
Cryptography 4

Blowfish (cont.)

Discussion

- The S-boxes and subkeys in blowfish are key dependent
- Brute-force attack is more difficult
- Operations are performed on both halves of the data in each round
- Improves the avalanche characteristics of the block cipher
- Fast to execute

Table 4.3 Speed Comparisons of Block Ciphers on a Pentium

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Clock cycles per round</th>
<th># of rounds</th>
<th># of clock cycles per byte encrypted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blowfish</td>
<td>9</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>RC5</td>
<td>12</td>
<td>16</td>
<td>23</td>
</tr>
<tr>
<td>DES</td>
<td>18</td>
<td>16</td>
<td>45</td>
</tr>
<tr>
<td>IDEA</td>
<td>50</td>
<td>8</td>
<td>50</td>
</tr>
<tr>
<td>Triple-DES</td>
<td>18</td>
<td>48</td>
<td>108</td>
</tr>
</tbody>
</table>
RC5

Design characteristics:
- **Suitable for hardware or software** – use only primitive operations on microprocessors
- **Fast** – the algorithm is word-oriented
- **Adaptable to processors of different word lengths** – the number of bits in a word is a parameter of RC5
- **Variable number of rounds** – the number of rounds is also a second parameter of RC5, a tradeoff between higher speed and higher security
- **Variable-length key** – a third parameter, a tradeoff between speed and security
- **Simple** - easy to implement and determine the strength of the algorithm
- **Low memory requirement** – suitable for smart cards and other devices with restricted memory
- **High security** – provide high security with suitable parameters
- **Data-dependent rotations** – strengthen algorithm against cryptanalysis
RC5 (cont.)

RC5 Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Allowable Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>Word size in bits. RC5 encrypts 2-word blocks</td>
<td>16, 32, 64</td>
</tr>
<tr>
<td>r</td>
<td>Number of rounds</td>
<td>0, 1, …, 255</td>
</tr>
<tr>
<td>b</td>
<td>Number of 8-bit bytes (octets) in the secret key K</td>
<td>0, 1, …, 255</td>
</tr>
</tbody>
</table>

- Length of the block of plaintext and ciphertext – 32, 64, 128
- Key length – 0 ~ 2040
- A specific version of RC5 is designated as RC5-$w/r/b$
- Example – RC5-32/12/16 (“nominal” version)
 - 32-bit words (64-bit plaintext and ciphertext blocks)
 - 12 rounds in the encryption and decryption algorithms
 - Key length is 16 bytes (128 bits)
RC5 (cont.)

Key Expansion
- A complex set of operations on the secret key to generate t subkeys
- Two subkeys are used in each round, and two are on an additional operations, so $t = 2r + 2$
- Each subkey is one word (w bits) in length
- Subkeys generation step:
 - Initialization
 $S[0], S[1], ..., S[t-1]$
 - Conversion
 $K[0 ... b-1] \Rightarrow L[0 ... c-1]$
 - Mix
Key Expansion (cont.)

Initialization

- Define
 \[P_w = \text{Odd}[(e-2)2^w] \]
 \[Q_w = \text{Odd}[(\phi-1)2^w] \]

where

- \(e = 2.718281828459 \ldots \) (base of natural logarithms)
- \(\phi = 1.618033988749 \ldots \) (golden ratio) = \(\frac{1+\sqrt{5}}{2} \)

and \(\text{Odd}[x] \) is the odd integer nearest to \(x \)

<table>
<thead>
<tr>
<th>(w)</th>
<th>16</th>
<th>32</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_w)</td>
<td>B7E1</td>
<td>B7E15163</td>
<td>B7E151628AED2A6B</td>
</tr>
<tr>
<td>(Q_w)</td>
<td>9E37</td>
<td>9E3779B7</td>
<td>9E3779B77F4A7C15</td>
</tr>
</tbody>
</table>

- \(S[0] = P_w \)

 for \(i = 1 \) to \(t-1 \) do

 \[S[i] = S[i-1] + Q_w \]
RC5 (cont.)

Key Expansion (cont.)

Mix operation:

\[i = j = X = Y = 0 \]

do 3×max(t, c) times:

\[S[i] = (S[i] + X + Y) \ll 3 \]

\[X = S[i] \]

\[i = (i + 1) \mod (t) \]

\[L[j] = (L[j] + X + Y) \ll (X + Y) \]

\[Y = L[j] \]

\[j = (j + 1) \mod (c) \]
RC5 (cont.)

Encryption

- Three primitive operations:
 - Addition
 - Bitwise exclusive-OR
 - Left circular rotation - \(x \ll y \)

- Algorithm:
 \[
 \begin{align*}
 LE_0 &= A + S[0] \\
 RE_0 &= B + S[1] \\
 \text{for } i = 1 \text{ to } r \text{ do} \\
 LE_i &= ((LE_{i-1} \oplus RE_{i-1}) \ll RE_{i-1}) + S[2i] \\
 RE_i &= ((RE_{i-1} \oplus LE_i) \ll LE_i) + S[2i + 1]
 \end{align*}
 \]
RC5 (cont.)

Decryption

Algorithm:

for $i = r$ down to 1 do

$RD_{i-1} = ((RD_i - S[2i + 1]) >>> LD_i) \oplus LD_i$

$LD_{i-1} = ((LD_i - S[2i]) >>> RD_{i-1}) \oplus RD_{i-1}$

$B = RD_0 - S[1]$

$A = LD_0 - S[0]$
RC5 (cont.)

RC5 Modes (RFC 2040) –

- **RC5 block cipher**: the electronic codebook (ECB) mode, takes a $2w$-bit input of plaintext and produces a ciphertext block of size $2w$
- **RC5-CBC**: the cipher block chaining mode
- **RC5-CBC-Pad**: a CBC that handles plaintext of any length
- **RC5-CTS**: the ciphertext stealing mode, handles plaintext of any length and produce ciphertext of equal length
- **Padding** –
 - at the end of message, form 1 to bb bytes of padding are added ($bb = \frac{2w}{8}$)
 - The pad byte are all the same and are set to a byte that represents the number of bytes of padding, e.g., if there are 8 bytes of padding, each byte has the bit pattern 00001000
RC5 (cont.)

RC5 Modes (cont.)

- Ciphertext stealing Mode – assume the last block is of length L, $L < 2w/8$
 1. Encrypt the first $(N-2)$ block using the traditional CBC technique
 2. Exclusive-OR P_{N-1} with C_{N-2} to create Y_{N-1}
 3. Encrypt Y_{N-1} to create E_{N-1}
 4. Select the first L bytes of E_{N-1} to create C_N
 5. Pad P_N with 0’s at the end and exclusive-OR with E_{N-1} to create Y_N
 6. Encrypt Y_N to create C_{N-1}
CAST-128

Characteristics
- Length of the block of plaintext and ciphertext – 64 bits
- Key length – 40 ~ 128 bits in 8-bit increments
- 16 rounds of operation
 - Two subkeys in each round: 32-bit K_m, and 5-bit K_r
 - The function F depends on the round

Encryption –
- Four primitive operations:
 - Addition and subtraction
 - Bitwise exclusive-OR
 - Left circular rotation
CAST-128 (cont.)

Encryption (cont.)

- **Algorithm:**

 \[
 L_0 \parallel R_0 = \text{Plaintext} \\
 \text{for } i = 1 \text{ to } 16 \text{ do} \\
 \quad L_i = R_{i-1} \\
 \quad R_i = L_{i-1} \oplus F_i[R_{i-1}, K_{mi}, K_{ri}] \\
 \text{Ciphertext } = R_{16} \parallel L_{16}
 \]

- **F function**

| Rounds 1, 4, 7, 10, 13, 16 | \(I = ((K_{mi} + R_{i-1}) \ll K_{ri}) \)
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(F = ((S1[Ia] \oplus S2[lb]) - S3[lc]) + S4[lid])</td>
</tr>
</tbody>
</table>
| Rounds 2, 5, 8, 11, 14 | \(I = ((K_{mi} \oplus R_{i-1}) \ll K_{ri}) \)
| | \(F = ((S1[Ia] - S2[lb]) + S3[lc]) \oplus S4[lid] \) |
| Rounds 3, 6, 9, 12, 15 | \(I = ((K_{mi} - R_{i-1}) \ll K_{ri}) \)
| | \(F = ((S1[Ia] + S2[lb]) \oplus S3[lc]) - S4[lid] \) |
CAST-128 (cont.)

Encryption (cont.)

Substitution Boxes

- CAST-128 uses 8 \(8 \times 32\) S-boxes: four (S1 ... S4) for encryption and decryption, four (S5 ... S8) for subkey generation
- Each S-box is an array of 32 columns by 256 rows
- The 8-bit input select a row and the 32-bit value is the output

Subkey Generation

- The 128-bit key is labeled: \(x0x1x2x3x4x5x6x7x8x9xAxBxCxDxExF\)
- Define

 - \(Km_1, ... , Km_{16}\) 16 32-bit masking subkeys (one per round)
 - \(Kr_1, ... , Kr_{16}\) 16 32-bit rotate subkeys, only the least significant 5 bits are used
 - \(z_0, ... , z_F\) intermediate (temporary) bytes
 - \(K_1, ... , K_{32}\) intermediate (temporary) 32-bit words
CAST-128 (cont.)

Encryption (cont.)

Subkey Generation (cont.)

- See Fig. 4.15 for generating K1 ... K32 using S5 ... S8
- The subkeys are defined as

 for $i = 1$ to 16 do

 $K_{m_i} = K_i$

 $K_{r_i} = K_{16+i}$
RC2

RC2 parameters
- Length of the block of plaintext and ciphertext – 64 bits
- Key length – 8 ~ 1024 bits

Key Expansion
- Generate 128 bytes of subkeys labeled L[0], …, L[127] (16-bit K[0]…K[63])
- Input: T bytes of key, put in L[0], …, L[T-1]
- Generate pseudorandom bytes P[0], …, P[255] from the digits of π
- Algorithm:

```plaintext
for i = $T$ to 127 do /* set L[$T$] ... L[127] */
    L[i] = P[L[i - 1] + L[i - $T$]]
L[128 - $T$] = P[L[128 - $T$]]
for i = 127-$T$ down to 0 do /* set L[0] ... L[127 - $T$] */
    L[i] = P[L[i + 1] \oplus L[i + $T$]]
```
RC2 (cont.)

Encryption

- **Primitive operations:**
 - Addition: +
 - Bitwise exclusive-OR: ⊕
 - Bitwise complement: ~
 - Bitwise AND: &
 - Left circular rotation: $x <<< y$

- **Input:** 64 bits stored in 16-bit words R[0], R[1], R[2], R[3]
- **18 rounds of mixing and mashing**
RC2 (cont.)

Encryption (cont.)

Mixing round:

\[
\]

\[
R[0] = R[0] <<< 1
\]

\[
j = j + 1
\]

\[
\]

\[
\]

\[
j = j + 1
\]

\[
\]

\[
\]

\[
j = j + 1
\]

\[
\]

\[
\]

\[
j = j + 1
\]

\[
K[j] \text{ is the first subkey that has not yet been used}
\]
RC2 (cont.)

Encryption (cont.)

- Mashing round:
 \[
 \begin{align*}
 \end{align*}
 \]

- Encryption:
 1. Initialize \(j \) to 0
 2. Perform 5 mixing rounds \((j = 20)\)
 3. Perform 1 mashing round
 4. Perform 6 mixing rounds \((j = 44)\)
 5. Perform 1 mashing round
 6. Perform 5 mixing rounds \((j = 64)\)
Characteristics of Advanced Symmetric Block Ciphers

- Variable key length – Blowfish, RC5, CAST-128, RC2
- Mixed operation –
- Data-dependent rotations – RC5
- Key-dependent rotations – CAST-128
- Key-dependent S-boxes – Blowfish
- Lengthy key schedule algorithm – Blowfish
- Variable F – CAST-128
- Variable plaintext/ciphertext block length – RC5
- Variable number of rounds – RC5
- Operations on both data halves each round – IDEA, Blowfish, RC5